Code :R7322304

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 INSTRUMENTATION & BIO PROCESS CONTROL

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. Discuss the characteristics of first order system for step forcing function in the input variable of the system.
- 2. (a) Define interacting and Non-interacting systems.
 - (b) Derive the transfer function of an interacting system.
- 3. A Unit step change in error introduced into a PID controller. If $K_C=10$, $T_1=1$, and $T_D=0.5$, Plot the response of the controller. P(t).
- 4. Define controller tuning. Discuss about the criteria for good control.
- 5. What is process reaction curve? Explain its importance in controller tuning.
- 6. Explain the following:
 - (a) Pneumatic actuators.
 - (b) Ball valves.
- 7. Describe about "feed forward control".
- 8. Write short notes on the following:
 - (a) Molecular wires & switches.
 - (b) Semiconductor biosensors.

2

Code: R7322304

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 INSTRUMENTATION & BIO PROCESS CONTROL

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. A thermometer having a time constant of 1 min is initially at 50° C. it is immersed in a bath maintained at 100° C at t=0. Determine the temperature reading at t=1.2 min.
- 2. (a) Derive the transfer function of a single liquid level system.
 - (b) Derive the transfer function of an interacting system, $H_2(s)/Q(s)$.
- 3. Derive the transfer functions of different types of controllers.
- 4. (a) Discuss about the criteria for good control.
 - (b) Explain about IAE, ISE, ITAE.
- 5. Describe about "Continuous & damped oscillation methods"
- 6. Explain about "Control Valve characteristics"
- 7. Describe about "Ratio control" with a neat block diagram.
- 8. What are the different types of biosensors and discuss their applications.

3

Code: R7322304

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 INSTRUMENTATION & BIO PROCESS CONTROL

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. Discuss the dynamics of simple liquid level system and derive the transfer function H(s)/Q(s).
- 2. (a) Differentiate between SERVO and REGULATORY operation.
 - (b) Derive the transfer function of a Non-interacting system, $H_2(s)/Q(s)$.
- 3. Describe the basic characteristics of three position controller.
- 4. Discuss about Ziegler-Nichols Controller settings.
- 5. (a) What is meant by process tuning and list the various methods of tuning of PID parameters.
 - (b) Discuss process reaction method for control loop tuning.
- 6. Explain the principle of a direct and reverse pneumatic actuator.
- 7. Describe about "Cascade control" with a neat block diagram.
- 8. Write short notes on the following biosensors:
 - (a) Bimolecular photomic computers.
 - (b) Transducers in biosensors.

4

Code: R7322304

III B.Tech II Semester(R07) Regular & Supplementary Examinations, April/May 2011 INSTRUMENTATION & BIO PROCESS CONTROL

(Biotechnology)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. A thermometer having a time constant of 0.1 min is steady state temperature of 90°F. At time t=0, the thermometer is placed in temperature bath maintained at 100°F. Determine the time needed for the thermometer to read 98°F.
- 2. (a) Explain about Continuous, batch process and self-regulation processes.
 - (b) What is SERVO problem? Give examples.
- 3. (a) A pneumatic P-controller is used to control temperature within the range of 60° to 100°F. The controller is adjusted so that the output pressure goes from 3psi (fully open) to 15 psi (fully closed) as the measured temperature goes from 71 to 75°F with the set point held constant. Find gain and proportional band
 - (b) Write short notes on "on-off" Control.
- 4. Discuss the following:
 - (a) $1/4^{th}$ Decay ratio
 - (b) IAE
 - (c) ISE
 - (d) ITAE
- 5. Define process reaction curve? Describe Cohen & coon controller tuning rules.
- 6. Discuss about different types of control valves and give their characteristics.
- 7. Explain multivariable control system by taking an example from distillation column.
- 8. Write short notes on "mechanical and molecular electronics based" biosensors.